counter

giovedì 27 ottobre 2011

Formula generatrice di numeri primi e numeri primi di Mersenne

Come si dimostra che la formula [2^(2^p)]/2-1 non produce (solo) numeri primi, facendo pochissimi calcoli (http://vixra.org/pdf/1106.0046v1.pdf)? Risoluzione: si tratta di un sottoinsieme dei numeri di Mersenne... è stato dimostrato che essi POSSONO essere primi se e solo se l'esponente è a sua volta primo. La precedente può essere riscritta come 2^(2^p-1)-1, ergo l'esponente è 2^p-1 e dunque basta provare che 2^p-1 non è primo, per qualche p. Io prendo p:=23 e ottengo 47×178481... niente, il Graal della teoria dei numeri dovrà attendere ancora!